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Preface

As with the previous editions, the range of material covered in this fifth edition is
regarded as appropriate for a first-level core studies course in mathematics for under-
graduate courses in all engineering disciplines. Whilst designed primarily for use by 
engineering students it is believed that the book is also highly suitable for students 
of the physical sciences and applied mathematics. Additional material appropriate for
second-level undergraduate core studies, or possibly elective studies for some engin-
eering disciplines, is contained in the companion text Advanced Modern Engineering
Mathematics.

The objective of the authoring team remains that of achieving a balance between 
the development of understanding and the mastering of solution techniques, with the
emphasis being on the development of the student’s ability to use mathematics with
understanding to solve engineering problems. Consequently, the book is not a collection
of recipes and techniques designed to teach students to solve routine exercises, nor is
mathematical rigour introduced for its own sake. To achieve the desired objective the
text contains:

l Worked examples
Approximately 500 worked examples, many of which incorporate mathematical
models and are designed both to provide relevance and to reinforce the role of
mathematics in various branches of engineering. In response to feedback from users,
additional worked examples have been incorporated within this revised edition.

l Applications
To provide further exposure to the use of mathematical models in engineering
practice, each chapter contains sections on engineering applications. These sec-
tions form an ideal framework for individual, or group, case study assignments
leading to a written report and/or oral presentation, thereby helping to develop
the skills of mathematical modelling necessary to prepare for the more open-
ended modelling exercises at a later stage of the course.

l Exercises
There are numerous exercise sections throughout the text, and at the end of each
chapter there is a comprehensive set of review exercises. While many of the
exercise problems are designed to develop skills in mathematical techniques,
others are designed to develop understanding and to encourage learning by doing,
and some are of an open-ended nature. This book contains over 1200 exercises
and answers to all the questions are given. It is hoped that this provision,
together with the large number of worked examples and style of presentation,
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also makes the book suitable for private or directed study. Again in response to
feedback from users, the frequency of exercises sections has been increased and
additional questions have been added to many of the sections.

l Numerical methods
Recognizing the increasing use of numerical methods in engineering practice,
which often complement the use of analytical methods in analysis and design
and are of ultimate relevance when solving complex engineering problems,
there is wide agreement that they should be integrated within the mathematics
curriculum. Consequently the treatment of numerical methods is integrated
within the analytical work throughout the book.

Much of the feedback from users relates to the role and use of software packages, 
particularly symbolic algebra packages, in the teaching of mathematics to engineering 
students. In response, use of such packages continues to be a significant feature of 
this new edition. Whilst any appropriate software package can be used, the authors 
recommend the use of MATLAB and/or MAPLE and have continued to adopt their 
use in this text. Throughout, emphasis will be on the use of MATLAB, with reference 
made to corresponding MAPLE commands and differences in syntax highlighted.
MATLAB/MAPLE commands have been introduced and illustrated, as inserts, throughout
the text so that their use can be integrated into the teaching and learning processes.
Students are strongly encouraged to use one of these packages to check the answers to
the examples and exercises. It is stressed that the MATLAB/MAPLE inserts are not
intended to be a first introduction of the package to students; it is anticipated that they
will receive an introductory course elsewhere and will be made aware of the excellent
‘help’ facility available. The purpose of incorporating the inserts is not only to improve
efficiency in the use of the package but also to provide a facility to help develop a 
better understanding of the related mathematics. Whilst use of such packages takes the
tedium out of arithmetic and algebraic manipulations it is important that they are used
to enhance understanding and not to avoid it. It is recognised that not all users of the
text will have access to either MATLAB or MAPLE, and consequently all the inserts
are highlighted and can be ‘omitted’ without loss of continuity in developing the sub-
ject content. Throughout the text two icons are used

l An open screen indicates that use of a software package would be useful 

(e.g. for checking solutions) but not essential

l A closed screen indicates that the use of a software package is essential or 

highly desirable.

Feedback, from users of the previous edition, on the subject content has been favour-
able, and consequently no new chapters have been introduced. However, in response 
to the feedback, chapters have been reviewed and amended/updated accordingly. 
Whilst subject content at this level has not changed much over the years the mode 
of delivery is being driven by developments in computer technology. Consequently
there has been a shift towards online teaching and learning, coupled with student self-
study programmes. In support of such programmes, worked examples and exercises
sections are seen by many as the backbone of the text. Consequently in this new edi-
tion emphasis is given to strengthening the ‘Worked Examples’ throughout the text and
increasing the frequency and number of questions in the ‘Exercises Sections’. This has
involved the restructuring, sometimes significant, of material within individual chapters. 
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A comprehensive Solutions Manual is obtainable free of charge to lecturers 
using this textbook. It will also be available for download via the Web at 
www.pearsoned.co.uk/james.

Also available online is a set of ‘Refresher Units’ covering topics students should
have encountered at school but may not have used for some time.
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1.1 Introduction
Mathematics plays an important role in our lives. It is used in everyday activities from
buying food to organizing maintenance schedules for aircraft. Through applications
developed in various cultural and historical contexts, mathematics has been one of the
decisive factors in shaping the modern world. It continues to grow and to find new uses,
particularly in engineering and technology.

Mathematics provides a powerful, concise and unambiguous way of organizing and
communicating information. It is a means by which aspects of the physical universe can
be explained and predicted. It is a problem-solving activity supported by a body of
knowledge. Mathematics consists of facts, concepts, skills and thinking processes –
aspects that are closely interrelated. It is a hierarchical subject in that new ideas and
skills are developed from existing ones. This sometimes makes it a difficult subject for
learners who, at every stage of their mathematical development, need to have ready
recall of material learned earlier.

In the first two chapters we shall summarize the concepts and techniques that most
students will already understand and we shall extend them into further developments in
mathematics. There are four key areas of which students will already have considerable
knowledge.

l numbers
l algebra
l geometry
l functions

These areas are vital to making progress in engineering mathematics (indeed, they will
solve many important problems in engineering). Here we will aim to consolidate that
knowledge, to make it more precise and to develop it. In this first chapter we will deal
with the first three topics; functions are considered in Chapter 2.

1.2 Number and arithmetic

1.2.1 Number line

Mathematics has grown from primitive arithmetic and geometry into a vast body of
knowledge. The most ancient mathematical skill is counting, using, in the first instance,
the natural numbers and later the integers. The term natural numbers commonly refers
to the set ގ = {1, 2, 3, …}, and the term integers to the set ޚ = {0, 1, −1, 2, −2, 3, 
−3, …}. The integers can be represented as equally spaced points on a line called the
number line as shown in Figure 1.1. In a computer the integers can be stored exactly.
The set of all points (not just those representing integers) on the number line represents
the real numbers (so named to distinguish them from the complex numbers, which are 

..

Figure 1.1
The number line.
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1.2 NUMBER AND ARITHMETIC 3

discussed in Chapter 3). The set of real numbers is denoted by ޒ. The general real num-
ber is usually denoted by the letter x and we write ‘x in ޒ’, meaning x is a real number.
A real number that can be written as the ratio of two integers, like or − , is called a
rational number. Other numbers, like ÷2 and π, that cannot be expressed in that way
are called irrational numbers. In a computer the real numbers can be stored only to 
a limited number of figures. This is a basic difference between the ways in which 
computers treat integers and real numbers, and is the reason why the computer languages
commonly used by engineers distinguish between integer values and variables on the
one hand and real number values and variables on the other.

1.2.2 Representation of numbers

For everyday purposes we use a system of representation based on ten numerals: 0, 1,
2, 3, 4, 5, 6, 7, 8, 9. These ten symbols are sufficient to represent all numbers if a posi-
tion notation is adopted. For whole numbers this means that, starting from the right-
hand end of the number, the least significant end, the figures represent the number of
units, tens, hundreds, thousands, and so on. Thus one thousand, three hundred and sixty-
five is represented by 1365, and two hundred and nine is represented by 209. Notice the
role of the 0 in the latter example, acting as a position keeper. The use of a decimal point
makes it possible to represent fractions as well as whole numbers. This system uses ten
symbols. The number system is said to be ‘to base ten’ and is called the decimal sys-
tem. Other bases are possible: for example, the Babylonians used a number system to
base sixty, a fact that still influences our measurement of time. In some societies a num-
ber system evolved with more than one base, a survival of which can be seen in imper-
ial measures (inches, feet, yards, … ). For some applications it is more convenient to
use a base other than ten. Early electronic computers used binary numbers (to base
two); modern computers use hexadecimal numbers (to base sixteen). For elementary
(pen-and-paper) arithmetic a representation to base twelve would be more convenient
than the usual decimal notation because twelve has more integer divisors (2, 3, 4, 6)
than ten (2, 5).

In a decimal number the positions to the left of the decimal point represent units
(100), tens (101), hundreds (102) and so on, while those to the right of the decimal point
represent tenths (10−1), hundredths (10−2) and so on. Thus, for example

2 1 4 · 3 6
↓ ↓ ↓ ↓ ↓
102 101 100 10−1 10−2

so

214.36 = 2(102) + 1(101) + 4(100) +

= 200 + 10 + 4 +

=

In other number bases the pattern is the same: in base b the position values are b0,
b1, b2, … and b−1, b−2, … . Thus in binary (base two) the position values are units, twos,
fours, eights, sixteens and so on, and halves, quarters, eighths and so on. In hexadecimal
(base sixteen) the position values are units, sixteens, two hundred and fifty-sixes and so
on, and sixteenths, two hundred and fifty-sixths and so on.

21436
100

5359
25  =

3
10

6
100  +

3 61
10

1
100( )  ( )+

7
5

3
2

..
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Example 1.1 Write (a) the binary number 10111012 as a decimal number and (b) the decimal 
number 11510 as a binary number.

Solution (a) 10111012 = 1(26) + 0(25) + 1(24) + 1(23) + 1(22) + 0(21) + 1(20)

= 6410 + 0 + 1610 + 810 + 410 + 0 + 110

= 9310

(b) We achieve the conversion to binary by repeated division by 2. Thus

115 ÷ 2 = 57 remainder 1 (20)

57 ÷ 2 = 28 remainder 1 (21)

28 ÷ 2 = 14 remainder 0 (22)

14 ÷ 2 = 7 remainder 0 (23)

7 ÷ 2 = 3 remainder 1 (24)

3 ÷ 2 = 1 remainder 1 (25)

1 ÷ 2 = 0 remainder 1 (26)

so that

11510 = 11100112

Example 1.2 Represent the numbers (a) two hundred and one, (b) two hundred and seventy-five, 
(c) five and three-quarters and (d) one-third in

(i) decimal form using the figures 0, 1, 2, 3, 4, 5, 6, 7, 8, 9;

(ii) binary form using the figures 0, 1;

(iii) duodecimal (base 12) form using the figures 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ∆, ε.

Solution (a) two hundred and one

(i) = 2 (hundreds) + 0 (tens) and 1 (units) = 20110

(ii) = 1 (one hundred and twenty-eight) + 1 (sixty-four) + 1 (eight) + 1 (unit) 
= 110010012

(iii) = 1 (gross) + 4 (dozens) + 9 (units) = 14912

Here the subscripts 10, 2, 12 indicate the number base.

(b) two hundred and seventy-five

(i) = 2 (hundreds) + 7 (tens) + 5 (units) = 27510

(ii) = 1 (two hundred and fifty-six) + 1 (sixteen) + 1 (two) + 1 (unit) = 1000100112

..
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1.2 NUMBER AND ARITHMETIC 5

(iii) = 1 (gross) + 10 (dozens) + eleven (units) = 1∆ε12

(∆ represents ten and ε represents eleven)

(c) five and three-quarters

(i) = 5 (units) + 7 (tenths) + 5 (hundredths) = 5.7510

(ii) = 1 (four) + 1 (unit) + 1 (half) + 1 (quarter) = 101.112

(iii) = 5 (units) + 9 (twelfths) = 5.912

(d) one-third

(i) = 3 (tenths) + 3 (hundredths) + 3 (thousandths) + … = 0.333 … 10

(ii) = 1 (quarter) + 1 (sixteenth) + 1 (sixty-fourth) + … = 0.010101 … 2

(iii) = 4 (twelfths) = 0.412

1.2.3 Rules of arithmetic

The basic arithmetical operations of addition, subtraction, multiplication and division are
performed subject to the Fundamental Rules of Arithmetic. For any three numbers 
a, b and c:

(a1) the commutative law of addition

a + b = b + a

(a2) the commutative law of multiplication

a × b = b × a

(b1) the associative law of addition

(a + b) + c = a + (b + c)

(b2) the associative law of multiplication

(a × b) × c = a × (b × c)

(c1) the distributive law of multiplication over addition and subtraction

(a + b) × c = (a × c) + (b × c)

(a − b) × c = (a × c) − (b × c)

(c2) the distributive law of division over addition and subtraction

(a + b) ÷ c = (a ÷ c) + (b ÷ c)

(a − b) ÷ c = (a ÷ c) − (b ÷ c)

Here the brackets indicate which operation is performed first. These operations are
called binary operations because they associate with every two members of the set of
real numbers a unique third member; for example,

2 + 5 = 7 and 3 × 6 = 18

..
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Example 1.3 Find the value of (100 + 20 + 3) × 456.

Solution Using the distributive law we have

(100 + 20 + 3) × 456 = 100 × 456 + 20 × 456 + 3 × 456

= 45 600 + 9120 + 1368 = 56 088

Here 100 × 456 has been evaluated as

100 × 400 + 100 × 50 + 100 × 6

and similarly 20 × 456 and 3 × 456.
This, of course, is normally set out in the traditional school arithmetic way:

456
123 ×

1 368
9 120

45 600
56 088

Example 1.4 Rewrite (a + b) × (c + d) as the sum of products.

Solution Using the distributive law we have

(a + b) × (c + d) = a × (c + d) + b × (c + d)

= (c + d) × a + (c + d) × b

= c × a + d × a + c × b + d × b

= a × c + a × d + b × c + b × d

applying the commutative laws several times.

A further operation used with real numbers is that of powering. For example, a × a
is written as a2, and a × a × a is written as a3. In general the product of n a’s where 
n is a positive integer is written as an. (Here the n is called the index or exponent.)
Operations with powering also obey simple rules:

an × am = an+m (1.1a)

an ÷ am = an−m (1.1b)

(an)m = anm (1.1c)

From rule (1.1b) it follows, by setting n = m and a ≠ 0, that a0 = 1. It is also convention
to take 00 = 1. The process of powering can be extended to include the fractional powers
like a1/2. Using rule (1.1c),

..
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(a1/n)n = an /n = a1

and we see that

a1/n = n÷a

the nth root of a. Also, we can define a−m using rule (1.1b) with n = 0, giving

1 ÷ am = a−m, a ≠ 0

Thus a−m is the reciprocal of am. In contrast with the binary operations +, ×, − and ÷,
which operate on two numbers, the powering operation ( )r operates on just one element
and is consequently called a unary operation. Notice that the fractional power

am/n = (n÷a)m = n÷(am)

is the nth root of am. If n is an even integer, then am/n is not defined when a is negative.
When n÷a is an irrational number then such a root is called a surd.

Numbers like ÷2 were described by the Greeks as a-logos, without a ratio number.
An Arabic translator took the alternative meaning ‘without a word’ and used the arabic
word for ‘deaf’, which subsequently became surdus, Latin for deaf, when translated
from Arabic to Latin in the mid-twelfth century.

Example 1.5 Find the values of

(a) 271/3 (b) (−8)2/3 (c) 16−3/2

(d) (−2)−2 (e) (−1/8)−2/3 (f ) (9)−1/2

Solution (a) 271/3 = 3÷27 = 3

(b) (−8)2/3 = (3÷(−8))2 = (−2)2 = 4

(c) 16−3/2 = (161/2)−3 = (4)−3 = =

(d) (−2)−2 =

(e) (−1/8)−2/3 = [3÷(−1/8)]−2 = [3÷(−1)/ 3÷(8)]−2 = [−1/2]−2 = 4

(f) (9)−1/2 = (3)−1 =

Example 1.6 Express (a) in terms of ÷2 and simplify (b) to (f ).

(a) ÷18 + ÷32 − ÷50 (b) 6/÷2 (c) (1 − ÷3)(1 + ÷3)

(d) (e) (1 + ÷6)(1 − ÷6) (f)
1 2

1 6

  

  

−
+

÷
÷

2

1 3  − ÷

1
3

1

2 2
1
4( )

  
−

=

1
64

1
43

..
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Solution (a) ÷18 = ÷(2 × 9) = ÷2 × ÷9 = 3÷2

÷32 = ÷(2 × 16) = ÷2 × ÷16 = 4÷2

÷50 = ÷(2 × 25) = ÷2 × ÷25 = 5÷2

Thus ÷18 + ÷32 − ÷50 = 2÷2.

(b) 6/÷2 = 3 × 2/÷2

Since 2 = ÷2 × ÷2, we have 6/÷2 = 3÷2.

(c) (1 − ÷3)(1 + ÷3) = 1 + ÷3 − ÷3 − 3 = −2

(d) Using the result of part (c) can be simplified by multiplying ‘top and

bottom’ by 1 + ÷3 (notice the sign change in front of the ÷). Thus

=

= −1 − ÷3

(e) (1 + ÷6)(1 − ÷6) = 1 − ÷6 + ÷6 − 6 = −5

(f) Using the same technique as in part (d) we have

=

= −(1 − ÷2 − ÷6 + 2÷3)/5

This process of expressing the irrational number so that all of the surds are in the
numerator is called rationalization.

When evaluating arithmetical expressions the following rules of precedence are observed:

l the powering operation ( )r is performed first
l then multiplication × and/or division ÷
l then addition + and/or subtraction −

When two operators of equal precedence are adjacent in an expression the left-hand
operation is performed first. For example

12 − 4 + 13 = 8 + 13 = 21

and

15 ÷ 3 × 2 = 5 × 2 = 10

 

1 2 6 1

1 6

      

  

− − +
−

÷ ÷ ÷ 2
 

1 2

1 6

1 2 1 6

1 6 1 6

  

  
  

(   )(   )

(   )(   )

−
+

=
− −
+ −

÷
÷

÷ ÷
÷ ÷

 

2 1 3

1 3

(   )

  

+
−

÷

2

1 3

2 1 3

1 3 1 3  
  

(   )

(   )(   )−
=

+
− +÷

÷
÷ ÷

2

1 3  − ÷
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1.2 NUMBER AND ARITHMETIC 9

The precedence rules are overridden by brackets; thus

12 − (4 + 13) = 12 − 17 = −5

and

15 ÷ (3 × 2) = 15 ÷ 6 = 2.5

Example 1.7 Evaluate 7 − 5 × 3 ÷ 22.

Solution Following the rules of precedence, we have

7 − 5 × 3 ÷ 22 = 7 − 5 × 3 ÷ 4 = 7 − 15 ÷ 4 = 7 − 3.75 = 3.25

1.2.4 Exercises

1 Find the decimal equivalent of 110110.1012.

2 Find the binary and octal (base eight) equivalents
of the decimal number 16 321. Obtain a simple
rule that relates these two representations of the
number, and hence write down the octal equivalent
of 10111001011012.

3 Find the binary and octal equivalents of the
decimal number 30.6. Does the rule obtained in
Question 2 still apply?

4 Use binary arithmetic to evaluate

(a) 100011.0112 + 1011.0012

(b) 111.100112 × 10.1112

5 Simplify the following expressions, giving the
answers with positive indices and without brackets:

(a) 23 × 2−4 (b) 23 ÷ 2−4 (c) (23)−4

(d) 31/3 × 35/3 (e) (36)−1/2 (f ) 163/4

6 The expression 7 − 2 × 32 + 8 may be evaluated
using the usual implicit rules of precedence. It
could be rewritten as ((7 − (2 × (32))) + 8) using
brackets to make the precedence explicit. Similarly
rewrite the following expressions in fully
bracketed form:

(a) 21 + 4 × 3 ÷ 2

(b) 17 − 62+3

(c) 4 × 23 − 7 ÷ 6 × 2

(d) 2 × 3 − 6 ÷ 4 + 32−5

7 Express the following in the form x + y÷2 with x
and y rational numbers:

(a) (7 + 5÷2)3 (b) (2 + ÷2)4

(c) 3÷(7 + 5÷2) (d) ÷( − 3÷2)

8 Show that

Hence express the following numbers in the form 
x + y÷n where x and y are rational numbers and n is
an integer:

(a) (b)

(c) (d)

9 Find the difference between 2 and the squares of

(a) Verify that successive terms of the sequence
stand in relation to each other as m/n does to 
(m + 2n)/(m + n).

(b) Verify that if m/n is a good approximation to 
÷2 then (m + 2n)/(m + n) is a better one, and that 
the errors in the two cases are in opposite directions.

(c) Find the next three terms of the above sequence.

1

1

3

2

7

5

17

12

41

29

99

70
, , , , , 

2 4 5

4 5

  

  

+
−

÷
÷

4 2 3

7 3 3

  

  

−
−

÷
÷

2 3 2

9 7 2

  

  

+
−

÷
÷

1

7 5 2  + ÷

1
2 2a b c

a b c

a b c  
  

  

  +
=

−
−÷

÷

11
2

M01_JAME0734_05_SE_C01.qxd  11/03/2015  09:38  Page 9




